Thinking in the FUTURE of AI

Popular AI

Since 2012

Popular AI

TEXT GENERATION

  1. ChatGPT: The Leading AI model
  2. Gemini: Google's competetor to ChatGPT
  3. Llama 3: Best AI open source model from Meta
  4. Claude 3: GPT competitor by Anthropic
  5. Perplexity: ChatGPT for research
  6. MM1: Apple's Large Language Model
  7. Titan: Amazon's LLM - Comes in Express & Premiere
  8. Grok: Elon Musk's OpenAI competitor
  9. CoPilot: Microsoft's Coding Assistant
  10. CodeWhisperer: Amazon's CoPilot Competetor
  11. Tabnine: Copilot competitor company
  12. Jasper: AI copilot for marketing
  13. Mistral AI: Open source text gen models

Popular AI

Generative Images

  1. Midjourney: Easy AI Image Generator
  2. Dall-E: OpenAI Image Generator
  3. Adobe Firefly: AI tool from Adobe
  4. Stable Diffusion: Best Image Generation
  5. Getty iStock: "Commercially Safe" generation
  6. Synthesia: AI text to video
  7. Sora: OpenAI text to video
  8. Runway: AI text-to-video
  9. Pika: AI Video Generator

Popular AI

OTHER POPULAR AI

  1. ElevenLabs: AI text-to-speech & voice clone
  2. Suno: AI music generator
  3. Voice.ai: AI voice changer
  4. AIMastering.com: AI Audio Mastering
  5. Lalal.AI: Remove instrument or voices from music
  6. Text to Speech and Speech to Text (Too many!)

ON Device

Object Detection

ON Device

NSFW JS

On Device

Tracking

On Device

Person Detection

ON Device

Face Detection

ON Device

Enjoy the Show

ON Device

Facial Recognition - For Nic Cage

ON Device

Face Mesh

ON Device

Makeup Try on

ON Device

Pose Detection

ON Device

Counting Exercises

ON Device

Scan Document

ON Device

Scan Document

- FIX ANGLES

- MAGIC ERASE

ON Device

LANGUAGE OPTIONS

ON Device

LANGUAGE OPTIONS

ON Device

LANGUAGE OPTIONS

THE FUTURE

A combination of AI models working in concert to give excellent customer experience.

Anything you could do if you were given enough instruction and examples, is something an AI could do for you.

Let's Do The Creativity Exercise!

WHY NEURAL?

Neural Synapses Are

  • Densely connected
  • Have varying thickness in connections (weights)
  • Vary synapse size (bias)
  • Need a certain amount of electricity to fire, or activation voltage.

Example Problem

XOR operation

A Simple Network

b = -5

a = σ

b = 15

a = σ

b = -15

 

w=10

w=-10

w=10

w=-10

w=10

w=10

A Simple Network

b = -5

a = σ

b = 15

a = σ

b = -15

a = σ

w=10

w=-10

w=10

w=-10

w=10

w=10

0

1

b = -5

a = σ

0.9933

(0 * 10)
+ (1 * 10)
+ -5
= 5
σ(5) = 0.9933

A Simple Network

b = -5

a = σ

b = 15

a = σ

b = -15

a = σ

w=10

w=-10

w=10

w=-10

w=10

w=10

0

1

0.9933

(0 * -10)
+ (1 * -10)
+ 15
= 5
σ(5) = 0.9933

b = 15

 

a = σ

0.9933

A Simple Network

b = -5

a = σ

b = 15

a = σ

b = -15

a = σ

w=10

w=-10

w=10

w=-10

w=10

w=10

0

1

0.9933

(0.9933 * 10)
+ (0.9933 * 10)
+ -15
= 4.866
σ(4.866) 0.9924

0.9933

b = -15

a = σ

0.9924

DONE!

GPU Speed

Is this the same as code?

Matrix Math

Linear Algebra

\sigma\left(\begin{bmatrix} \begin{bmatrix} 10 & 10 \\ -10 & -10 \end{bmatrix} & \begin{bmatrix} -5 \\ 15 \end{bmatrix} \\ \begin{bmatrix} 10 \\ 10 \end{bmatrix}^T & \begin{bmatrix} -15 \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
\sigma\left(\begin{bmatrix} \begin{bmatrix} 10 & 10 \\ -10 & -10 \end{bmatrix} & \begin{bmatrix} -5 \\ 15 \end{bmatrix} \\ \begin{bmatrix} 10 \\ 10 \end{bmatrix}^T & \begin{bmatrix} -15 \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right)
\sigma\left(\begin{bmatrix} \begin{bmatrix} 10 & 10 \\ -10 & -10 \end{bmatrix} & \begin{bmatrix} -5 \\ 15 \end{bmatrix} \\ \begin{bmatrix} 10 \\ 10 \end{bmatrix}^T & \begin{bmatrix} -15 \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right)
\sigma\left(\begin{bmatrix} \begin{bmatrix} 10 & 10 \\ -10 & -10 \end{bmatrix} & \begin{bmatrix} -5 \\ 15 \end{bmatrix} \\ \begin{bmatrix} 10 \\ 10 \end{bmatrix}^T & \begin{bmatrix} -15 \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right)

Congratulations

You Understand Inference of a Basic Neural Network

A Simple Network

b = -5

a = σ

b = 15

a = σ

b = -15

 

w=10

w=-10

w=10

w=-10

w=10

w=10

1

2

3

4

5

6

7

8

9

Parameters

HOW?

MAGIC PARAMETER NUMBERS!?

HOW?

MAGIC PARAMETER NUMBERS!?

Math From Scratch?

NO!

Let's See Some AI Training

https://playground.tensorflow.org/

Let's Build a Model

https://teachablemachine.withgoogle.com/

WHY SHOULD YOU NOT USE THIS IN PRODUCTION?

Let's Code!

https://github.com/tensorflow/tfjs-models

Let's Explore Data / Training

https://aisortinghat.com/

6. Let's LLM

Understand LLMs deeper

  1. Understand Generative AI
  2. Learn LLM Lingo

THE QUESTIONS

Gant Laborde

Thanks!

GantLaborde.com

 

Company: Infinite Red

AI - In Person Workshop

By Gant Laborde

AI - In Person Workshop

  • 175